Ten-Year-Old Child Test Dummy

Hybrid III Type

Problem

- Current 213 covers children up to 6-y-o and 208 starts with small females
- Unaddressed a large population segment (approx. 10%) between 6-y-o and children approximating the size of small female
- Too big for CRS and borderline for adult restraints
- Laws require use of belts or CRS
- Also exposed to air bags and as pedestrians
- Test tool is needed to evaluate and certify adequacy of available protection systems

Height and Weight of U.S. Population and Comparable Dummies

	Standing Height (ft in)		Weight (lbs)	
	H-III	Human	H-III	Human
5 th Female	4'11''	4'9"/4'11"/5'1"	108	92.0/106/117
10 year-old	?	4'2"/4'6''/4'9"	?	52/72.5/112
6 year-old	3'9''	3'7"/3'11"/4'3"	51.6	37.3/47.2/75.6

Concept Definition

- SAE DFTG was asked in early 2000 to develop a 10-year-old
- DFTG accepted the task
- Weight and Height of 10-year-old provided from CDC Data Bank
- DFTG meeting in May 2000 met to define the concept

CDC Children Growth Charts

Concept Design Targets

- Dummy Height 54 in (4'6")
- Dummy Weight 72 lbs
- Postures
 - Erect seated
 - Slouched seated
 - Standing
 - Kneeling
- Basic Construction Similar to Small Female

Sitting Postures: erect, normal, and slouched

Dummy Development

- DFTG Held first review meeting in June, 2000
- Reviewed impact responses scaled from small female and 6-year-old
- Provisional performance requirements defined
- Anthropometry and mass goals finalized
- Engineering and prototype build:
 - Upper Body: FTSS
 - Lower Body: Denton ATD
- Prototype completion target Christmas 2000

General Construction

- Head (Small Female)
 - Aluminum Skull Casting
 - Vinyl Skin
- Neck
 - Flexible multiple disc molded rubber
 - Center cable
 - Mounted on adjustable lower bracket to accommodate different postures

Construction

Upper Torso

- Steel spine and six damped ribs
- Combined clavicle and scapula
- Sloped aluminum shoulder
- Aluminum/nylon sternum and urethane bib
- Rib-guides to control vertical rib motion
- Vinyl torso jacket with improved low friction surface finish

Construction

Lower Torso

- Lumbar spine (rubber cylinder) with center cable
- Adjustable lumbar bracket to accommodate different postures
- Pelvic bone aluminum casting
- Pelvis skin- vinyl over urethane foam
- Pelvis is formed for semi-slouched seated posture

Construction

- Arms Upper and Lower
 - Steel skeleton
 - Vinyl skin over urethane foam
 - Hands vinyl skin over steel shank
 - Wrist, elbow hinge joints
- Legs Upper and Lower
 - Steel skeleton
 - Vinyl skin over urethane foam
 - Feet vinyl skin over steel skeleton
 - Ankle ball joint; knee hinge joint

Instrumentation

- Head
 - Triax accelerometers
 - Tilt sensors (optional)
- Neck
 - Six axis upper load cell
 - Six axis lower load cell (optional)
- Shoulder
 - Two axis belt load cell (optional)

Instrumentation

Thorax

- Triax accelerometer pack
- Mid sternum rotary potentiometer
- Two spine accelerometers (optional)
- Two accelerometers on the sternum(optional)
- Two IR-TRACCS deflection sensors (optional)

Instrumentation

- Pelvis
 - Lumbar six channels load cell (optional)
 - Triax accelerometer pack (optional)
 - Biaxial A.S.I.S load cells (optional)
- Femur
 - Uni-axial load cell
- Tibia
 - Five-axis load cell (optional)

Typical Dimensions

	Design Target	<u>Actual</u>
 Standing Height 	54.1 in	52.6 in
 Erect Sitting Height 	28.3 in	29.2 in
 Shoulder Breadth 	12.9 in	12.9 in
 Shoulder to Elbow 	11.3 in	11.8 in
 Chest Depth 	6.1 in	6.5 in
 Hip Width 	10.2 in	10.4 in
 Buttock to Knee Pivot 	17.9 in	18.0 in

Body Segment Target Weights

	Design Target	Actual
 Overall Weight 	72+ lb	76.00 lb
 Head assembly 	8.1 lb	8.07 lb
 Neck assembly 	1.4 lb	1.66 lb
 Upper Torso 	15.6 lb	17.69 lb
 Lower Torso 	21.1 lb	18.16 lb
• Arms (both)	6.6 lb	7.02 lb
• Legs (both)	18.7 lb	23.40 lb

The Ten Year Old Hybrid III Dummy First Prototype

Current and Projected Status

- First prototype assembled in February 2001
- H-III DFTG review directed design corrections
- Revised prototype assembled in April 2001
- First drawings completed: April, 2001
- Dummy performance verifications: April May, 2001
- GM check-out and shake down tests: May June, 2001
- Agency brief shake down tests: June July, 2001
- Review of sufficiency: July-August, 2001

Future Plans

- Commercial availability of prototypes: July August
- Extensive Agency evaluation: August December, 2001
- If no problems are encountered, incorporation into Part
 572 may begin around January 2002
- Projected use: evaluations of booster seats and adult restraints, exploratory use in NCAP
- Estimated uninstrumented dummy cost: \$32k \$35k
- Estimated instrumentation cost: \$12k \$50k

